# 4-5a Writing Compound Inequalities

Two inequalities that are joined together form a **compound inequality**. There are two forms of a compound inequality. Consider the following example:

Graph the solution: x < -2 or x > 5



Graph the solution:  $x \ge -4$  and x < 1



When the shading runs into each other, the there will be values that satisfy BOTH inequalities.

We will want to write these compound inequalities like \_\_\_\_\_

- \*\*You will want to notice these 3 things: 1
  - 2.
  - 3.

### **Examples:**

1. All real numbers that are at least 2 and at most 9.

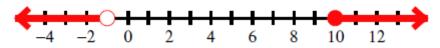


2. All real numbers that are less than 3 or exceed 7.



3. All real numbers that are no less than -4 but less than 0.

4. All real numbers fewer than 9 but at least 2.




5. \_\_\_\_\_

$$-10 \le x \le -5$$



6. \_\_\_\_\_



7. \_\_\_\_\_



## 4-5b Interval Notation

Interval Notation is another way of expressing compound inequalities.

Use ( ) \_\_\_\_\_ and [ ] \_\_\_\_

## For Example:

Inequality:  $-4 \le x \le 6$ 

 $\leq x \leq 6$  Inequality:  $0 < x \leq 20$ 

Interval Notation: [-4,6]

Interval Notation: (0,20]

1.  $5 < x \le 15$  2. -1 < x < 3 3.  $32^{\circ}F \le x \le 100^{\circ}F$ 

4. All real numbers between -3 and 6, inclusive.

## Translate each phrase if necessary into an inequality AND graph.

1.  $-4 \le x \le 2$ 



2. All real numbers that are less than 7, but greater than 2



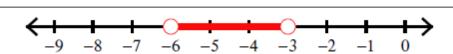
3. All real numbers that are at least -1 and at most 3



4. All real numbers that are fewer than 20 but more than 15



5. All real numbers at least -1 and at most 4




#### Write a verbal sentence for each inequality below

6.



7



8.