4-5a Writing Compound Inequalities

Two inequalities that are joined together form a compound inequality. There are two forms of a compound inequality. Consider the following example:

Graph the solution: $x<-2$ or $x>5$

Graph the solution: $x \geq-4$ and $x<1$

When the shading runs into each other, the there will be values that satisfy BOTH inequalities.

We will want to write these compound inequalities like \qquad
**You will want to notice these 3 things: 1 .
2.
3.

Examples:

1. All real numbers that are at least 2 and at most 9 .

2. All real numbers that are less than 3 or exceed 7 .

3. All real numbers that are no less than -4 but less than 0 .
4. All real numbers fewer than 9 but at least 2 .
5. \qquad

$$
-10 \leq x \leq-5
$$

6. \qquad

7. \qquad

4-5b Interval Notation

Interval Notation is another way of expressing compound inequalities.

$$
\text { Use }() \ldots \text { and }[]
$$

For Example:

$$
\text { Inequality: }-4 \leq x \leq 6
$$

Interval Notation: $[-4,6]$

Inequality: $0<x \leq 20$
Interval Notation: (0,20]

$1.5<x \leq 15$	$2 .-1<x<3$	$3.32^{\circ} \mathrm{F} \leq x \leq 100^{\circ} \mathrm{F}$

4. All real numbers between -3 and 6, inclusive.
\qquad
Translate each phrase if necessary into an inequality AND graph.
5. $-4 \leq x \leq 2$

6. All real numbers that are less than 7 , but greater than 2

7. All real numbers that are at least -1 and at most 3

8. All real numbers that are fewer than 20 but more than 15

9. All real numbers at least -1 and at most 4

Write a verbal sentence for each inequality below
6. \qquad

7. \qquad

8. \qquad

